Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glutaredoxin protects cerebellar granule neurons from dopamine-induced apoptosis by activating NF-kappa B via Ref-1.

Identifieur interne : 001028 ( Main/Exploration ); précédent : 001027; suivant : 001029

Glutaredoxin protects cerebellar granule neurons from dopamine-induced apoptosis by activating NF-kappa B via Ref-1.

Auteurs : D. Daily ; A. Vlamis-Gardikas ; D. Offen ; L. Mittelman ; E. Melamed ; A. Holmgren ; A. Barzilai

Source :

RBID : pubmed:11035035

Descripteurs français

English descriptors

Abstract

The neurotransmitter dopamine (DA) induces apoptosis via its oxidative metabolites. This study shows that glutaredoxin 2 (Grx2) from Escherichia coli and human glutaredoxin could protect cerebellar granule neurons from DA-induced apoptosis. E. coli Grx2, which catalyzes glutathione-disulfide oxidoreduction via its -Cys-Pro-Tyr-Cys- active site, penetrates into cerebellar granule neurons and exerts its activity via NF-kappaB activation. Analysis of single and double cysteine to serine substitutions in the active site of Grx2 showed that both cysteine residues were essential for activity. Although DA significantly reduced NF-kappaB binding activity, Grx2 could stimulate the binding of NF-kappaB to DNA by: (i) translocating NF-kappaB from the cytoplasm to the nucleus after promoting the phosphorylation and degradation of I-kappaBalpha, and (ii) activating the binding of pre existing nuclear NF-kappaB. The DNA binding activity of NF-kappaB itself was essential for neuronal survival. Overexpression of I-kappaB dominant negative gene (I-kappaB-DeltaN) in granule neurons significantly reduced their viability, irrespective of the presence of Grx2. Ref-1 expression was down-regulated by DA but up-regulated by Grx2, while treatment of neurons with Ref-1 antisense oligonucleotide reduced the ability of Grx2 to activate NF-kappaB binding activity. These results show that Grx2 exerts its anti apoptotic activity through the activation of Ref-1, which then activates NF-kappaB.

DOI: 10.1074/jbc.M008121200
PubMed: 11035035


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glutaredoxin protects cerebellar granule neurons from dopamine-induced apoptosis by activating NF-kappa B via Ref-1.</title>
<author>
<name sortKey="Daily, D" sort="Daily, D" uniqKey="Daily D" first="D" last="Daily">D. Daily</name>
<affiliation>
<nlm:affiliation>Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978 Israel.</nlm:affiliation>
<wicri:noCountry code="subField">Tel Aviv 69978 Israel</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Vlamis Gardikas, A" sort="Vlamis Gardikas, A" uniqKey="Vlamis Gardikas A" first="A" last="Vlamis-Gardikas">A. Vlamis-Gardikas</name>
</author>
<author>
<name sortKey="Offen, D" sort="Offen, D" uniqKey="Offen D" first="D" last="Offen">D. Offen</name>
</author>
<author>
<name sortKey="Mittelman, L" sort="Mittelman, L" uniqKey="Mittelman L" first="L" last="Mittelman">L. Mittelman</name>
</author>
<author>
<name sortKey="Melamed, E" sort="Melamed, E" uniqKey="Melamed E" first="E" last="Melamed">E. Melamed</name>
</author>
<author>
<name sortKey="Holmgren, A" sort="Holmgren, A" uniqKey="Holmgren A" first="A" last="Holmgren">A. Holmgren</name>
</author>
<author>
<name sortKey="Barzilai, A" sort="Barzilai, A" uniqKey="Barzilai A" first="A" last="Barzilai">A. Barzilai</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2001">2001</date>
<idno type="RBID">pubmed:11035035</idno>
<idno type="pmid">11035035</idno>
<idno type="doi">10.1074/jbc.M008121200</idno>
<idno type="wicri:Area/Main/Corpus">001055</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001055</idno>
<idno type="wicri:Area/Main/Curation">001055</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001055</idno>
<idno type="wicri:Area/Main/Exploration">001055</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glutaredoxin protects cerebellar granule neurons from dopamine-induced apoptosis by activating NF-kappa B via Ref-1.</title>
<author>
<name sortKey="Daily, D" sort="Daily, D" uniqKey="Daily D" first="D" last="Daily">D. Daily</name>
<affiliation>
<nlm:affiliation>Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978 Israel.</nlm:affiliation>
<wicri:noCountry code="subField">Tel Aviv 69978 Israel</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Vlamis Gardikas, A" sort="Vlamis Gardikas, A" uniqKey="Vlamis Gardikas A" first="A" last="Vlamis-Gardikas">A. Vlamis-Gardikas</name>
</author>
<author>
<name sortKey="Offen, D" sort="Offen, D" uniqKey="Offen D" first="D" last="Offen">D. Offen</name>
</author>
<author>
<name sortKey="Mittelman, L" sort="Mittelman, L" uniqKey="Mittelman L" first="L" last="Mittelman">L. Mittelman</name>
</author>
<author>
<name sortKey="Melamed, E" sort="Melamed, E" uniqKey="Melamed E" first="E" last="Melamed">E. Melamed</name>
</author>
<author>
<name sortKey="Holmgren, A" sort="Holmgren, A" uniqKey="Holmgren A" first="A" last="Holmgren">A. Holmgren</name>
</author>
<author>
<name sortKey="Barzilai, A" sort="Barzilai, A" uniqKey="Barzilai A" first="A" last="Barzilai">A. Barzilai</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="2001" type="published">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Substitution (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Animals, Newborn (MeSH)</term>
<term>Apoptosis (drug effects)</term>
<term>Apoptosis (physiology)</term>
<term>Bacterial Proteins (pharmacology)</term>
<term>Carbon-Oxygen Lyases (metabolism)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Cerebellum (cytology)</term>
<term>DNA Repair (MeSH)</term>
<term>DNA-(Apurinic or Apyrimidinic Site) Lyase (MeSH)</term>
<term>Dopamine (pharmacology)</term>
<term>Endodeoxyribonucleases (metabolism)</term>
<term>Escherichia coli (MeSH)</term>
<term>Glutaredoxins (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Mice, Inbred BALB C (MeSH)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>NF-kappa B (metabolism)</term>
<term>Neurons (cytology)</term>
<term>Neurons (drug effects)</term>
<term>Neurons (physiology)</term>
<term>Oxidoreductases (MeSH)</term>
<term>Protein Transport (drug effects)</term>
<term>Proteins (chemistry)</term>
<term>Proteins (genetics)</term>
<term>Proteins (pharmacology)</term>
<term>Recombinant Proteins (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Animaux nouveau-nés (MeSH)</term>
<term>Apoptose (effets des médicaments et des substances chimiques)</term>
<term>Apoptose (physiologie)</term>
<term>Carbon-oxygen lyases (métabolisme)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Cervelet (cytologie)</term>
<term>DNA-(apurinic or apyrimidinic site) lyase (MeSH)</term>
<term>Dopamine (pharmacologie)</term>
<term>Endodeoxyribonucleases (métabolisme)</term>
<term>Escherichia coli (MeSH)</term>
<term>Facteur de transcription NF-kappa B (métabolisme)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Mutagenèse dirigée (MeSH)</term>
<term>Neurones (cytologie)</term>
<term>Neurones (effets des médicaments et des substances chimiques)</term>
<term>Neurones (physiologie)</term>
<term>Oxidoreductases (MeSH)</term>
<term>Protéines (composition chimique)</term>
<term>Protéines (génétique)</term>
<term>Protéines (pharmacologie)</term>
<term>Protéines bactériennes (pharmacologie)</term>
<term>Protéines recombinantes (pharmacologie)</term>
<term>Réparation de l'ADN (MeSH)</term>
<term>Souris (MeSH)</term>
<term>Souris de lignée BALB C (MeSH)</term>
<term>Substitution d'acide aminé (MeSH)</term>
<term>Transport des protéines (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon-Oxygen Lyases</term>
<term>Endodeoxyribonucleases</term>
<term>NF-kappa B</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Dopamine</term>
<term>Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Cervelet</term>
<term>Neurones</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Cerebellum</term>
<term>Neurons</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Apoptosis</term>
<term>Neurons</term>
<term>Protein Transport</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Apoptose</term>
<term>Neurones</term>
<term>Transport des protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Carbon-oxygen lyases</term>
<term>Endodeoxyribonucleases</term>
<term>Facteur de transcription NF-kappa B</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Dopamine</term>
<term>Protéines</term>
<term>Protéines bactériennes</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Apoptose</term>
<term>Neurones</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Apoptosis</term>
<term>Neurons</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Substitution</term>
<term>Animals</term>
<term>Animals, Newborn</term>
<term>Cells, Cultured</term>
<term>DNA Repair</term>
<term>DNA-(Apurinic or Apyrimidinic Site) Lyase</term>
<term>Escherichia coli</term>
<term>Glutaredoxins</term>
<term>Humans</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Mutagenesis, Site-Directed</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Animaux nouveau-nés</term>
<term>Cellules cultivées</term>
<term>DNA-(apurinic or apyrimidinic site) lyase</term>
<term>Escherichia coli</term>
<term>Glutarédoxines</term>
<term>Humains</term>
<term>Mutagenèse dirigée</term>
<term>Oxidoreductases</term>
<term>Réparation de l'ADN</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
<term>Substitution d'acide aminé</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The neurotransmitter dopamine (DA) induces apoptosis via its oxidative metabolites. This study shows that glutaredoxin 2 (Grx2) from Escherichia coli and human glutaredoxin could protect cerebellar granule neurons from DA-induced apoptosis. E. coli Grx2, which catalyzes glutathione-disulfide oxidoreduction via its -Cys-Pro-Tyr-Cys- active site, penetrates into cerebellar granule neurons and exerts its activity via NF-kappaB activation. Analysis of single and double cysteine to serine substitutions in the active site of Grx2 showed that both cysteine residues were essential for activity. Although DA significantly reduced NF-kappaB binding activity, Grx2 could stimulate the binding of NF-kappaB to DNA by: (i) translocating NF-kappaB from the cytoplasm to the nucleus after promoting the phosphorylation and degradation of I-kappaBalpha, and (ii) activating the binding of pre existing nuclear NF-kappaB. The DNA binding activity of NF-kappaB itself was essential for neuronal survival. Overexpression of I-kappaB dominant negative gene (I-kappaB-DeltaN) in granule neurons significantly reduced their viability, irrespective of the presence of Grx2. Ref-1 expression was down-regulated by DA but up-regulated by Grx2, while treatment of neurons with Ref-1 antisense oligonucleotide reduced the ability of Grx2 to activate NF-kappaB binding activity. These results show that Grx2 exerts its anti apoptotic activity through the activation of Ref-1, which then activates NF-kappaB.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11035035</PMID>
<DateCompleted>
<Year>2001</Year>
<Month>04</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>276</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2001</Year>
<Month>Jan</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Glutaredoxin protects cerebellar granule neurons from dopamine-induced apoptosis by activating NF-kappa B via Ref-1.</ArticleTitle>
<Pagination>
<MedlinePgn>1335-44</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The neurotransmitter dopamine (DA) induces apoptosis via its oxidative metabolites. This study shows that glutaredoxin 2 (Grx2) from Escherichia coli and human glutaredoxin could protect cerebellar granule neurons from DA-induced apoptosis. E. coli Grx2, which catalyzes glutathione-disulfide oxidoreduction via its -Cys-Pro-Tyr-Cys- active site, penetrates into cerebellar granule neurons and exerts its activity via NF-kappaB activation. Analysis of single and double cysteine to serine substitutions in the active site of Grx2 showed that both cysteine residues were essential for activity. Although DA significantly reduced NF-kappaB binding activity, Grx2 could stimulate the binding of NF-kappaB to DNA by: (i) translocating NF-kappaB from the cytoplasm to the nucleus after promoting the phosphorylation and degradation of I-kappaBalpha, and (ii) activating the binding of pre existing nuclear NF-kappaB. The DNA binding activity of NF-kappaB itself was essential for neuronal survival. Overexpression of I-kappaB dominant negative gene (I-kappaB-DeltaN) in granule neurons significantly reduced their viability, irrespective of the presence of Grx2. Ref-1 expression was down-regulated by DA but up-regulated by Grx2, while treatment of neurons with Ref-1 antisense oligonucleotide reduced the ability of Grx2 to activate NF-kappaB binding activity. These results show that Grx2 exerts its anti apoptotic activity through the activation of Ref-1, which then activates NF-kappaB.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Daily</LastName>
<ForeName>D</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978 Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vlamis-Gardikas</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Offen</LastName>
<ForeName>D</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mittelman</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Melamed</LastName>
<ForeName>E</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Holmgren</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Barzilai</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516008">GLRX2 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516009">Glrx2 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016328">NF-kappa B</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D004706">Endodeoxyribonucleases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.2.-</RegistryNumber>
<NameOfSubstance UI="D019757">Carbon-Oxygen Lyases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.2.99.18</RegistryNumber>
<NameOfSubstance UI="C085108">APEX1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.2.99.18</RegistryNumber>
<NameOfSubstance UI="C486216">Apex1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.2.99.18</RegistryNumber>
<NameOfSubstance UI="D043603">DNA-(Apurinic or Apyrimidinic Site) Lyase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>VTD58H1Z2X</RegistryNumber>
<NameOfSubstance UI="D004298">Dopamine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000831" MajorTopicYN="N">Animals, Newborn</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017209" MajorTopicYN="N">Apoptosis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019757" MajorTopicYN="N">Carbon-Oxygen Lyases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002531" MajorTopicYN="N">Cerebellum</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004260" MajorTopicYN="N">DNA Repair</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043603" MajorTopicYN="Y">DNA-(Apurinic or Apyrimidinic Site) Lyase</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004298" MajorTopicYN="N">Dopamine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004706" MajorTopicYN="N">Endodeoxyribonucleases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016328" MajorTopicYN="N">NF-kappa B</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009474" MajorTopicYN="N">Neurons</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="Y">Oxidoreductases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2000</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>11</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2001</Year>
<Month>4</Month>
<Day>6</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2000</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>11</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11035035</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M008121200</ArticleId>
<ArticleId IdType="pii">M008121200</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Barzilai, A" sort="Barzilai, A" uniqKey="Barzilai A" first="A" last="Barzilai">A. Barzilai</name>
<name sortKey="Daily, D" sort="Daily, D" uniqKey="Daily D" first="D" last="Daily">D. Daily</name>
<name sortKey="Holmgren, A" sort="Holmgren, A" uniqKey="Holmgren A" first="A" last="Holmgren">A. Holmgren</name>
<name sortKey="Melamed, E" sort="Melamed, E" uniqKey="Melamed E" first="E" last="Melamed">E. Melamed</name>
<name sortKey="Mittelman, L" sort="Mittelman, L" uniqKey="Mittelman L" first="L" last="Mittelman">L. Mittelman</name>
<name sortKey="Offen, D" sort="Offen, D" uniqKey="Offen D" first="D" last="Offen">D. Offen</name>
<name sortKey="Vlamis Gardikas, A" sort="Vlamis Gardikas, A" uniqKey="Vlamis Gardikas A" first="A" last="Vlamis-Gardikas">A. Vlamis-Gardikas</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001028 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001028 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11035035
   |texte=   Glutaredoxin protects cerebellar granule neurons from dopamine-induced apoptosis by activating NF-kappa B via Ref-1.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11035035" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020